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Abstract

We consider statistical inference for single or low-dimensional parameters in a high-dimensional
linear model under a semi-supervised setting, wherein the data are a combination of a la-
belled block-wise missing data set of a relatively small size and a large unlabelled data set.
The proposed method utilises both labelled and unlabelled data without any imputation
or removal of the missing observations. The asymptotic properties of the estimator are
established under regularity conditions. Hypothesis testing for low-dimensional coefficients
are also studied. Extensive simulations are conducted to examine the theoretical results.
The method is evaluated on the Alzheimer’s Disease Neuroimaging Initiative data.

Keywords: block-missing data, confidence intervals, hypothesis testing, semi-supervised
inference

1. Introduction

Semi-supervised learning (Chapelle et al., 2009; Zhu and Goldberg, 2009) is a popular
research field in statistics and machine learning because of the growing availability of un-
labelled data and the costs of generating labelled data. Many semi-supervised data sets,
which contain a small labelled data set and a large amount of unlabelled data, have been
collected. Electronic health record (EHR) data sets are typically semi-supervised because
labelling a subject with gold standard outcome is often costly and time-consuming. Earlier
works on semi-supervised learning have focused on classification (Castelli and Cover, 1995,
1996; Blum and Mitchell, 1998; Nigam et al., 2000; Belkin and Niyogi, 2004; Weston et al.,
2005; Wang and Shen, 2007; Wang et al., 2008), regression (Zhou and Li, 2005; Wasserman

∗. Corresponding Author

c©2024 Shanshan Song, Yuanyuan Lin and Yong Zhou.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/21-1504.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/21-1504.html


Song, Lin and Zhou

and Lafferty, 2007; Johnson and Zhang, 2008) and prediction (Liang et al., 2007; Ernst
et al., 2008).

Recent advances in integrating unlabelled and labelled data for a combined analysis
in a model-free framework have been reported in the literature. Chakrabortty and Cai
(2018) proposed an efficient and adaptive semi-supervised estimator for linear regression.
Gronsbell and Cai (2018) studied a class of semi-supervised approaches for the efficient
evaluation of the predictive performance of logistic regression models. Zhang et al. (2019)
studied semi-supervised estimation for the population mean of the response. The best
linear approximation was examined by Azriel et al. (2021) under a semi-supervised setting.
These important works have shown that semi-supervised estimators are more efficient than
supervised estimators when the working model is mis-specified.

High-dimensional data are common in various scientific applications such as signal pro-
cessing, econometrics and medical studies. State-of-the-art statistical methodologies have
been developed for the inference of the regression coefficients in high-dimensional regres-
sion; see Zhang and Zhang (2014), van de Geer et al. (2014), Javanmard and Montanari
(2014), Ning and Liu (2017), Cai and Guo (2017), Javanmard and Montanari (2018), Belloni
et al. (2019), among many others. By using unlabelled data, Bellec et al. (2018) provided
non-asymptotic upper bounds for the prediction risk of the lasso estimator in the context
of transductive and semi-supervised learning. Novel semi-supervised inference for the ex-
plained variance in a high-dimensional linear model was developed by Cai and Guo (2020).
Deng et al. (2020) considered optimal semi-supervised inference in a working linear model.

Despite these developments, in many practical applications, the available data may be
incompletely observed and subject to missingness among the high-dimensional covariates.
The ‘block missing’ phenomenon frequently occurs when the data are from multiple sources
or modalities. As different modalities may contain complementary information, statistical
methods that use multi-modality data (rather than single-modality data) may yield better
performance. In bioinformatics, a single measurement method is insufficient for examining
the complex mechanisms of a disease. Nonetheless, it is often difficult to collect multiple
measurements simultaneously for a single patient because (i) some measurements may be
too expensive to be performed on each participant, and (ii) participants may be unwilling to
take certain measurements because of physical or mental conditions. Generally, for multi-
modality data, if the observations of a certain modality are completely missing, such data are
termed block-missing data. Figure 1 shows three examples of block-missing data containing
several modalities. For example, in Figure 1(a), the individuals in Groups 1-2 suffer from
complete missingness of a certain modality. Interest has recently increased in developing
statistical methodologies for analyzing block-missing data. Ignoring missing observations in
statistical analysis is intuitive and easy-to-implement but unsurprisingly leads to substantial
information loss (Nakagawa and Freckleton, 2008). Another promising approach to handling
missing data is imputation (Xiang et al., 2014; Long and Johnson, 2015; Cai et al., 2016;
Xue and Qu, 2020). Yu et al. (2020) studied a novel optimal sparse linear prediction for
block-missing multi-modality data without imputation. In addition to the data subject to
block missing among the covariates, Xue et al. (2021) developed an imputation-based semi-
supervised inference procedure for a single coefficient in a high-dimensional linear model for
which a large unlabelled data set is available.
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Figure 1: Different structures of block-missing data. Each blank block represents the miss-
ingness of a certain modality.

In this paper, without imputation, we propose a double debiased semi-supervised ap-
proach to conduct interval estimation and hypothesis testing for single or low-dimensional
coefficients in a high-dimensional linear model with block-missing data. Our procedure
consists of two steps: 1. To explore the association between the parameter of interest β?

and the partially-observed covariates, the `2 projection mapping the response on the space
spanned by these observed covariates is considered, and the projection coefficient vector
is denoted by θ. Building on the identified relationship between θ and β?, we design a
extended lasso-type estimator (Tibshirani, 1996) of β?, where a debiasing step is applied to
correct the biases incurred by the lasso estimator of θ. The resulting estimator is proven to
satisfy the oracle inequality under mild conditions. 2. The Karush–Kuhn–Tucker (KKT)
conditions corresponding to the designed minimization problem enable us to develop a
bias-corrected estimator of β?, which has a Gaussian limiting distribution. Our proposed
method avoids direct imputation, thus (i) it is more stable and computationally efficient,
especially in high dimensions; (ii) no restrictive conditions are imposed on the association
among the predictors; (iii) it is flexible to the block-missing structure in the sense that,
no additional constraints are imposed on the index sets of observed covariates in different
groups except for the constraint that ∪kI(k) = {1, . . . , p}. Here I(k) denotes the index set
of covariates that are observed in the k-th group. Notably, the nature of block-wise missing
data results in different sample sizes among the components of the covariate vector; thus,
the convergence rates of different components of our estimator for the regression parameter
vector could be distinct but of the same order of O(

√
n), where n is the size of the labelled

data. This indicates that, unlike the lasso-type estimators whose convergence to the limit
is not uniform, our bias-corrected estimator is not plagued by the nonuniformity of limiting
distributions.

The rest of the paper is organized as follows. In Section 2, we describe the data rep-
resentation, model assumption and the proposed semi-supervised inference procedure. A
large-sample theory of the proposed estimator is presented in Section 3. In Section 4, the
proposed method is evaluated by simulations and an analysis of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study. A few concluding remarks are given in Section 5.
All proofs of the theoretical results are presented in the Appendix.
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2. Model and Methodology

2.1 Model and Data Description

Consider

Y = X>β? + ε, (1)

where Y is a scalar response variable and X is a p-vector of covariates, β? ∈ Rp is the
true regression coefficient vector, and ε is an unobservable error term with mean 0 and
variance σ2, independent of X. Let β?j be the j-th component of β?, j = 1, . . . , p. Denote
the joint distribution of (Y,X) as PY,X and the marginal distribution of X as PX . Let
β?G ≡ {β?j : j ∈ G}, where G is any fixed-dimensional subset of {1, 2, . . . , p}. Denote
S0 = {j : β?j 6= 0} as the active set and its cardinality as s0 ≡ |S0|. Owing to the
block-missing mechanism, we let K be the number of disjoint groups based on the missing
patterns, and Sk, k = 1, . . . ,K, be the collection of individuals belonging to the k-th group.
For instance, K = 2 in Figure 1(a).

Under a semi-supervised setting, the data available emanate from two sources: (i) L =

∪Kk=1Lk, where Lk = {(Yi, Z(k)
i ), i ∈ Sk}, nk = |Sk| is the cardinality of Sk, independent

and identically distributed (i.i.d.) observations from the joint distribution of (Y, Z(k)),
where

∑
k nk = n and according to the nature of block-wise missingness, Z(k) is a certain

sub-vector of X; (ii) U = {Xi : i = n + 1, . . . , n + N} are N i.i.d. observations from
PX . Let X(u) ∈ RN×p be the design matrix with rows {Xi : i = n + 1, . . . , n + N}.
Let I(k) be the index set of covariates that are observed in the k-th group. Assume that

∪kI(k) = {1, . . . , p}, that is, XiI(k) = Z
(k)
i for any i ∈ Sk and k = 1, . . . ,K. Let pk = |I(k)|

be the cardinality of I(k). For j = 1, . . . , p, let H(j) be the collection of groups with the
j-th component of X observed. Throughout this paper, we assume that:

(A1) the commonly observed variables among different groups follow the same distribu-
tion PY,X ;

(A2) L ⊥ U , and Lk ⊥ Lk′ for k 6= k′, where “⊥” represents independence;

(A3) K is independent of (n,N), and n/N → 0 as n→∞ and N →∞;

(A4) p→∞ as n→∞ and N →∞.

Remark 1 When each modality is assumed to be missing completely at random, Condition
(A1) holds. Condition (A1) also implies that the measured covariates from L and U follow
the same distribution. In fact, it can be relaxed to Condition (A1’): for each j ∈ {1, . . . , p},
k ∈ H(j) and any i ∈ Sk, the observed covariate Xij satisfies that its first two moments,
cross-covariance E{XijXi`} for all ` 6= j with ` ∈ I(k) and E{XijYi} are the same as those
of the joint distribution PY,X . Condition (A1’) allows the commonly-observed covariates in
L and U to follow different distributions, but those moment conditions in Condition (A1’)
should be satisfied.

2.2 Double Debiased Semi-supervised Inference Procedure

Our goal is to conduct pointwise inference for a single component β?j or simultaneous infer-
ence for β?G using both labelled and unlabelled data. When the covariates X are completely
observed in the labelled data set L, since the lasso estimator (Tibshirani, 1996) is not root-n
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Figure 2: Projection of Y ∈ R on the space of all linear combinations of X ∈ Rp. Here,
Z(k) ∈ Rpk is a subvector of X for k = 1, . . . ,K.

consistent and does not have a tractable limiting distribution under the high-dimensional
setting, effective debiasing methods were proposed (Zhang and Zhang, 2014; van de Geer
et al., 2014; Javanmard and Montanari, 2014) for constructing valid confidence intervals and
hypothesis testing under supervised setting. When the labeled data L suffer from block-
missingness, Xue et al. (2021) developed a novel semi-supervised inference procedure with
multiple blockwise imputation for each individual coefficient in a high dimensional linear
model, where the missing values were imputed by fitting linear regression models with lasso.
Such an imputation procedure has a computational complexity O((n+N)p2 min(n+N, p));
see Section 2.12 in Bühlmann and van de Geer (2011) for more details. And its validity
relies on the linearity assumption among covariates.

To avoid imputation, a natural idea is to explore the association between the target
parameter β? and the block-missing data L under model (1). For k = 1, . . . ,K, we define
θ(k) = arg minθ E([Y − {Z(k)}>θ]2) and δ(k) = Y − {Z(k)}>θ(k), where the expectation “E”
is taken with respect to the joint distribution of (Y,Z(k)). Then, θ(k) is the `2 projection
coefficient vector of Y onto Z(k), and {Z(k)}>θ(k) is the best linear predictor of Y given
Z(k). For k = 1, . . . ,K, θ(k) is also the solution to E

(
Z(k)

[
X>β? − {Z(k)}>θ(k)

])
= 0, that

is,

E
{
Z(k)X>β?

}
= E

[
Z(k){Z(k)}>θ(k)

]
. (2)

Note that (2) always holds under model (1). We display the relationship between θ(k) and
β? in Figure 2, indicating that δ(k) can be decomposed into the sum of two orthogonal terms:
ε and X>β?−{Z(k)}>θ(k), and θ(k) can be also viewed as the `2 projection coefficient vector
of X>β? onto Z(k). To construct an estimating equation for estimating β? based on (2),

we need to estimate θ(k) first. With nk data points from Lk = {(Yi, Z(k)
i ), i ∈ Sk}, the lasso

estimator of θ(k) is defined as

θ̂(k) ∈ arg min
θ

 1

nk

∑
i∈Sk

[Yi − {Z(k)
i }

>θ]2 + λk‖θ‖1

 , k = 1, . . . ,K, (3)

where λk is a tuning parameter. We use cross-validation to select λk among K groups
in the numerical studies. In high dimensional setting, directly plugging in the regularized
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estimators θ̂(k) into (2) will result in inherent biases for estimating β?. Specifically, as stated
in Cai et al. (2021), the biases can accumulate when projecting θ̂(k) along the direction of

Z
(k)
i , which leads to a significant bias in estimating E[Z(k){Z(k)}>θ(k)] and hence affects

the convergence rate of the resulting estimator for β?.

To solve this problem, a debiasing step is needed to correct the biases incurred by θ̂(k).
For each component of θ(k), a bias-correction idea is to construct a projection direction by
minimizing the variance with the bias constrained (Zhang and Zhang, 2014; Javanmard and
Montanari, 2014). But it could be computationally expensive to identify such a projection
direction for each component of θ(k).

Our proposed debiasing idea is motivated by the error decomposition of the plug-in

estimator n−1k
∑

i∈Sk Z
(k)
i {Z

(k)
i }>θ̂(k):

1

nk

∑
i∈Sk

Z
(k)
i {Z

(k)
i }

>θ̂(k) − E
[
Z(k){Z(k)}>θ(k)

]
= − 1

nk

∑
i∈Sk

Z
(k)
i

[
Yi − {Z(k)

i }
>θ̂(k)

]
(4)

+

 1

nk

∑
i∈Sk

Z
(k)
i {Z

(k)
i }

> − E
[
Z(k){Z(k)}>

] θ(k) +
1

nk

∑
i∈Sk

Z
(k)
i δ

(k)
i ,

where δ
(k)
i = Yi−{Z(k)

i }>θ(k), i ∈ Sk. The first term −n−1k
∑nk

i=1 Z
(k)
i [Yi−{Z(k)

i }>θ̂(k)] on the

right hand side of (4) is data-dependent, so the plug-in estimator n−1k
∑

i∈Sk Z
(k)
i {Z

(k)
i }>θ̂(k)

subtracting −n−1k
∑nk

i=1 Z
(k)
i [Yi−{Z(k)

i }>θ̂(k)] shall be a better estimator for E[Z(k){Z(k)}>
θ(k)] with a faster convergence rate. Moreover, to estimate E[Z(k){Z(k)}>], instead of using

n−1k
∑

i=1 Z
(k)
i {Z

(k)
i }>, we use both Lk and U to construct a new estimator:

Σ̃
(k)
n,N = (N + nk)

−1[
n+N∑
i=n+1

Z
(k)
i {Z

(k)
i }

> +

nk∑
i=1

Z
(k)
i {Z

(k)
i }

>].

Hence, we propose the following calibrated semi-supervised estimator of E[Z(k){Z(k)}>θ(k)]:

SSk = Σ̃
(k)
n,N θ̂

(k) +
1

nk

nk∑
i=1

Z
(k)
i

[
Yi − {Z(k)

i }
>θ̂(k)

]
.

Such a semi-supervised estimator is more accurate than the plug-in estimator when a large
amount of unlabelled data are available. Our proposed debiasing approach is of independent
interest and could be applied to other estimation problems.

Now, we are ready to introduce a point estimator for β?. Based on (2), we consider the
following estimating equation:

Σ̂Nβ = S̄,

where Σ̂N = N−1
∑n+N

i=n+1XiX
>
i , S̄ = (S̄1, . . . , S̄p)

> is a weighted average of {SSk}Kk=1 with
S̄j = [

∑
k

√
nkI{j ∈ I(k)}]−1

∑
k

√
nkSSk,(j)I{j ∈ I(k)}, and SSk,(j) is the element of SSk

corresponding to the position of the j-th element of X in Z(k) if j ∈ I(k), j = 1, . . . , p.
Heuristically, if Σ̂N is invertible (which may not be true in a high-dimensional case), an
estimator of β? can be obtained by solving the above estimating equation, that is, Σ̂−1N S̄,
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which can be viewed as the minimizer of β>Σ̂Nβ/2− S̄>β. Thus, for large p, we consider
an initial estimator of β? defined as

β̂λ ∈ arg min
β

(
1

2
β>Σ̂Nβ − S̄>β + λ‖β‖1

)
, (5)

where λ is a tuning parameter. The selection of λ is discussed in Section 2.3, and some
theoretical condition for λ is given in Theorem 2 in Section 3. The solution to the opti-
mization problem in (5) might not be unique. Our theoretical results in Section 3 are valid
for any minimizer of (5). In particular, under additional regularity conditions, we show
that β̂λ is consistent for β? and also obtain its `1-norm estimation accuracy in Theorem
2. Although the initial estimator β̂λ performs well in terms of point estimation, it is not
root-n consistent and cannot be directly used for inference.

Next, we provide a new semi-supervised inference procedure for the low-dimensional
coefficients β?G, the main object of interest in our paper. Our main idea is to invert the
Karush–Kuhn–Tucker (KKT) condition for problem (5) as in van de Geer et al. (2014), so
that a test statistic taking the dependence among the components of the estimator of β?G
into account can be constructed for simultaneous hypothesis testing problems for β?G.

It follows from (2) and Lemma 9 in the Appendix A that for each j = 1, 2, . . . , p,

S̄j − E(XijX
>
i β

?) =
1∑

k∈H(j)

√
nk

 ∑
k∈H(j)

1
√
nk

∑
i∈Sk

Xij

{
Yi − {Z(k)

i }
>θ(k)

}+ ∆0,j

=
1∑

k∈H(j)

√
nk

 ∑
k∈H(j)

1
√
nk

∑
i∈Sk

Xijδ
(k)
i

+ ∆0,j , (6)

where ∆0,j is an asymptotically negligible term under mild conditions. Some notations
are needed to present our idea conveniently. Let Xfill be the covariate matrix by filling
the unobserved elements with 0. And let δw be the weighted residual vector composed

by δ
(k)
i /
√
nk, i ∈ Sk from all groups as illustrated in Figure 3, which corresponds to the

block-missing data structure in subfigure (c) in Figure 1. Let J be a p× p diagonal matrix
with J j,j =

∑
k∈H(j)

√
nk, where H(j) denotes the collection of groups observing the j-th

element of X in L. Then, (6) can be recast into

S̄ − E(XX>β?) = J−1X>fillδw + ∆0,

where ∆0 = (∆0,1, . . . ,∆0,p)
>. It is known that β̂λ defined in (5) satisfies the KKT condi-

tions, that is, −
(
S̄ − Σ̂N β̂λ

)
+ λκ̂ = 0. Then,

β̂λ − β? + Θ̂λκ̂ = Θ̂J−1X>fillδw + Θ̂∆0 − (Θ̂Σ̂N − I)(β̂λ − β?)− Θ̂(Σ̂N −Σ)β?

≡ Θ̂J−1X>fillδw + Θ̂∆0 + ∆1 + ∆2, (7)

where Θ̂ is a proper approximate inverse of Σ̂N , ∆1 = −(Θ̂Σ̂N − I)(β̂λ − β?), ∆2 =
−Θ̂(Σ̂N − Σ)β? and Σ = E(XX>). It is shown in Section 3 that Θ̂∆0, ∆1 and ∆2 are
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Figure 3: An illustration of Xfill and δw, corresponding to the block-missing structure of
data presented in subfigure (c) in Figure 1.

asymptotically negligible under mild conditions. Thus, our proposed estimator of β? is
defined as

β̂ := β̂λ + Θ̂
(
S̄ − Σ̂N β̂λ

)
.

Our method is essentially a double-debiasing procedure. The estimator β̂ has a similar
form to the de-sparsified lasso estimator introduced by van de Geer et al. (2014). In the
following, we adopt the nodewise lasso (van de Geer et al., 2014) to construct Θ̂. Recall
that X(u) is the design matrix with rows {Xi : i = n + 1, . . . , n + N}. For each j =

1, . . . , p, define γ̂j = arg minγ∈Rp−1{‖X(u)
·j −X

(u)
·−jγ‖22/N + 2λ

(u)
j ‖γ‖1} and τ̂2j = ‖X(u)

·j −
X

(u)
·−j γ̂j‖22/N + λ

(u)
j ‖γ̂j‖1, where X

(u)
·j is the j-th column of X(u), X

(u)
·−j is the submatrix of

X(u) after removing its j-th column and λ
(u)
j is a tuning parameter. Rewrite γ̂j = {γ̂j,k : k =

1, . . . , p, k 6= j}. Write D̂ = diag(τ̂21 , . . . , τ̂
2
p ) ∈ Rp×p. With a slight abuse of notations, we

let Θ̂ = D̂−2Ĉ, where the j-th row of Ĉ ∈ Rp×p is Ĉj = (−γ̂j,1,−γ̂j,j−1, 1,−γ̂j,j+1,−γ̂j,p)>,
j = 1, . . . , p.

Suppose that Γ̂ is a component-wise consistent estimator of the limiting covariance
matrix of J−1X>fillδw. For each j = 1, . . . , p, an asymptotic (1−α)-level confidence interval
for β?j is given by

[
β̂j − zα/2

√
(Θ̂Γ̂Θ̂

>
)j,j , β̂j + zα/2

√
(Θ̂Γ̂Θ̂

>
)j,j

]
,

where zα/2 = Φ−1(1−α/2) and Φ(·) denotes the cumulative distribution function of N(0, 1).
The theoretical justifications for this procedure are provided in Section 3.
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2.3 Tuning Parameter Selection

As the loss function in (5) cannot be expressed as an i.i.d. sum, the popular tuning param-
eter selectors, such as cross validation, AIC or BIC, are not directly applicable. Inspired by
the extended Bayesian information criteria (EBIC) introduced by Chen and Chen (2008), we
propose to minimize the following extended Bayesian information criterion for block-missing
data (BM-EBIC) for selecting λ:

nw

(
β̂>λ Σ̂N β̂λ − 2S̄>β̂λ

)
+ σ̂2w‖β̂λ‖0 log(nw) + 2σ̂2w log(C‖β̂λ‖0p ), (8)

where nw = p−1
∑p

j=1

∑
k∈H(j) n

3/2
k /J j,j and σ̂2w = p−1

∑p
j=1

∑
k∈H(j) nk(nk − ‖θ̂k‖0)−1∑

i∈S(k)[Yi − {Z
(k)
i }>θ̂(k)]2/J

2
j,j with J j,j =

∑
k∈H(j)

√
nk.

In view of the expression of nw and σ̂2w, the tuning parameter selector in (8) takes the
block-missing structure of the data into account. Though our numerical studies in Section
4 contain supporting evidence that the proposed BM-EBIC selector works reasonably well,
a rigorous proof of its consistency would be nontrivial and challenging, which merits further
theoretical investigation.

2.4 Numerical Algorithm

We apply the proximal gradient descent with momentum algorithm to compute (5) nu-
merically. The algorithm can be viewed as a combination of proximal gradient update
and Nesterov’s acceleration scheme (Nesterov, 2013). When the objective function con-
tains a penalty term as in lasso, the algorithm is equivalent to the fast iterative soft-
thresholding algorithm (FISTA) proposed by Beck and Teboulle (2009). The algorithm
is summarized below. The soft thresholding operator Sτ : Rp → Rp with coordinates
(Sτ (a))j = sign(aj) max(|aj | − τ, 0) is used in the algorithm with threshold τ = sλ. The
step size is determined by the backtracking rule.

Algorithm 1 Proximal gradient descent with momentum

Require: some initialization β0, α0, the tolerance parameter tol, backtracking rule param-
eters (τ, γ)

Ensure: the solution in (5)
1: t← 0
2: D0 ← 1
3: while Dt > tol do
4: ∆t = Σ̂Nβ

t − S̄ . Backtracking rule: steps 4-7
5: s = 1
6: while f(βt + s∆t) > f(βt)− τs〈∆t,∆t〉 do . Here, f(β) = β>Σ̂Nβ/2− S̄>β
7: s← γs

8: βt+1 = Ssλ
(
αt − s(Σ̂Nα

t − S̄)
)

9: αt+1 = βt+1 + t
t+3(βt+1 − βt)

10: Dt+1 = ‖βt+1 − βt‖
11: t← t+ 1
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One may also consider the majorize–minorize (MM) algorithm, another important al-
ternative method to solve penalized estimating equations (Johnson et al., 2008).

3. Asymptotic Properties

More notations are needed. For a number c ∈ R, cp denotes a p-vector with each element
being c. For an index set S ⊆ {1, . . . , p}, aS is the subvector of a ∈ Rp consisting of all
components aj with j ∈ S. Denote a−j as the subvector of a after removing the j-th element.
Let |S| be the cardinality of a set S. For a matrix A, we define ‖A‖∞ = maxi,j |Ai,j |. For
index sets S, S1, S2 ⊆ {1, . . . , p}, AS· and A·S represent the submatrix of A consisting of
its rows and columns indexed by S, respectively, and AS1,S2 denotes the submatrix of A
consisting of entries in the rows indexed by S1 and the columns indexed by S2. C,C1, C2, . . .
are generic constants that may vary from place to place. For two sequences of real numbers
an and bn, an = o(bn) if an/bn → 0; an = O(bn) or an . bn if there exists a constant C such
that an ≤ Cbn for all n. Denote an � bn if an . bn and bn . an.

The following Conditions (B1)-(B3) on the underlying model and Conditions (C1)-(C3)
on the block-missing mechanism are imposed.

(B1) The covariate vector X follows zero-mean sub-Gaussian distribution.

(B2) The smallest eigenvalue Λmin of Σ is bounded by a positive constant C1, i.e.,
Λmin ≥ C1.

(B3) The second moment of Y is finite, i.e., E(Y 2) <∞.

(C1) The number of groups K is finite.

(C2) For k = 1, . . . ,K, the error term δ(k) follows sub-Gaussian distribution with mean
0 and variance {η(k)}2 <∞.

(C3) Assume max1≤k≤K s
(k)
√

log pk/nk = o(1), where s(k) = ‖θ(k)‖0.
These conditions are regularity conditions. When the common distribution assumption

in Condition (A1) is relaxed as Condition (A1’) in Remark 1, our theoretical results in this
section will still hold if Condition (C1) is replaced by Condition (C1’): There exist positive
constants C, ν such that for each k = 1, . . . ,K, any j ∈ I(k), any i ∈ Sk and every t > 0,
Xij is a zero-mean random variable satisfying

P(|Xij | > t) ≤ C exp−νt
2
,

where I(k) denotes the index set of covariates observed in the k-th group. Condition (C3)
is the sparsity condition for high-dimensional models. More discussions on the sparsity of
θ(k) can be found in Bühlmann and van de Geer (2015).

The cardinality of the active set S0 = {j : β?j 6= 0} is denoted by s0 and s(k) = ‖θ(k)‖0.
For ease of exposition, we denote

τ(pk, s
(k), nk, N) =

{
N

(N + nk)

√
log pk
nk

+

√
N log pk

(N + nk)

}
s(k)

√
log pk
nk

+

√
s(k) log pk
(N + nk)

.

Theorem 2 (Oracle inequality) Suppose that Conditions (A1)-(A4), (B1)-(B3), (C1)-(C3)
hold and log pk . min{N,nk}, log p . min{N,n1, . . . , nK}. Then, for λk �

√
log pk/nk,

k = 1, . . . ,K and λ � maxj [{
∑

k∈H(j)

√
nk}−1|H(j)|

√
log p]+

√
s0 log p/N+maxj [{

∑
k∈H(j)

10
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√
nk}−1

∑
k∈H(j){

√
nkτ(pk, s

(k), nk, N)}] and s0 �
√
N/ log p, the event

(β̂λ − β?)>Σ̂N (β̂λ − β?) + λ‖β̂λ − β?‖1 . λ2s0, (9)

holds with the probability larger than 1− 2p−C1 − 10K{mink pk}−C2 for absolute constants
C1 > 0, C2 > 0.

Theorem 2 gives an oracle inequality for the initial estimator β̂λ in (5). For a new
pair of observation (Y,X), the conditional prediction error E{(Y − X>β̂λ)2|L,U} = σ2 +
(β̂λ − β?)>Σ(β̂λ − β?). Theorem 2 implies that (β̂λ − β?)>Σ̂N (β̂λ − β?) . λ2s0 holds with
high probability. In addition, Theorem 2 also gives the bound for the `1-error of β̂λ, i.e.,
‖β̂λ − β?‖1 . λs0 holds with high probability.

More remarks on Theorem 2 can be made. First, if we replace the proposed esti-

mator SSk by the plug-in estimator n−1k
∑nk

i=1 Z
(k)
i {Z

(k)
i }>θ̂(k) in the construction of the

initial estimator β̂λ, Theorem 2 still holds if λ � maxj [{
∑

k∈H(j)

√
nk}−1|H(j)|

√
log p] +√

s0 log p/N + maxj [{
∑

k∈H(j)

√
nk}−1

∑
k∈H(j){

√
s(k) log pk}]. The key difference is in

the two terms τ(pk, s
(k), nk, N) and

√
s(k) log pk/nk. Since the order of τ(pk, s

(k), nk, N) is
much smaller than that of

√
s(k) log pk/nk, our proposed initial estimator β̂λ has a much

faster convergence rate. Especially, when N & maxk[n
2/{s(k) log pk}], τ(pk, s

(k), nk, N) is
of order s(k) log pk/nk. Second, the oracle inequality in (9) also shows how the unlabelled
data contribute to the convergence rate of β̂λ. To explain this, we consider three special
cases when p1 � p+2 � . . . � pK � p and s(1) � s(2) � . . . � s(K) � s0.

• Case (i): when n1 � n2 � . . . � nK � n, we have

‖β̂λ−β?‖1 . s0
√

log p/n+s
3/2
0

√
log p/N+(N+n)−1Ns20(log p/n+log p/

√
nN), (10)

holds with high probability. Recall that with n labelled samples, the convergence rate
of the `1-error of the classical lasso estimator is O(s0

√
log p/n), where s0 �

√
n/ log p

(Bühlmann and van de Geer, 2011). Hence, the addtional term s
3/2
0

√
log p/N + (N +

n)−1Ns20(log p/n + log p/
√
nN) in (10) is the price paid for the block-missingness

of labelled data. In this case, if the unlabelled data size satisfies N & s0n, then
‖β̂λ−β?‖1 . s0

√
log p/n holds with high probability, i.e., the convergence rate of the

`1-error of β̂λ attains s0
√

log p/n.

• Case (ii): when n � n1 � n2 � . . . � nK−1 � nK with all complete samples coming
from the K-th group (i.e., with nK completely-observed samples available),

‖β̂λ−β?‖1 . s0
√

log p/n+s
3/2
0

√
log p/N+(N+nK)−1Ns20(log p/

√
nKn+log p/

√
nN),

with high probability. In this case,

– if N � s0nK , ‖β̂λ − β?‖1 . s0
√

log p/nK holds with high probability, which is
at the same order as the `1-error of the lasso estimator based on nK complete
observations only;

11
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– if s0nK . N � s0n, ‖β̂λ − β?‖1 . s
3/2
0

√
log p/N holds with high probability,

indicating that our initial estimator β̂λ has a faster convergence rate of the `1-
error than the lasso estimator based on nK complete observations only;

– if N & s0n, ‖β̂λ − β?‖1 . s0
√

log p/n holds with high probability, implying that

the initial estimator β̂λ achieves the optimal convergence rate O(s0
√

log p/n) if
the unlabelled data size is sufficiently large.

• Case (iii): when n1 � n2 � . . . � nK−1 � nK � n with all complete samples coming
from the K-th group, if s0 �

√
n1/ log p, we have

‖β̂λ−β?‖1 . s0
√

log p/n+s
3/2
0

√
log p/N+(N+n1)

−1Ns20(log p/
√
n1n+log p/

√
nN),

holds with high probability. Moreover, when the unlabelled data size N & s0n,
‖β̂λ − β?‖1 . s0

√
log p/n holds with high probability.

Several stimulating works on semi-supervised inference (Chakrabortty and Cai, 2018;
Deng et al., 2020; Azriel et al., 2021) have shown that, when the linear model is correctly
specified, improved estimation of the regression coefficients using additional unlabelled data
is impossible without further assumptions relating the target parameters to the marginal
distribution of X. This is indeed true when all labelled data are completely observed.
Our Theorem 2 shows that the unlabelled data play an important role in improving the
convergence rate of the initial estimator in the presence of block-missing labelled data.

Under some mild conditions, it was shown in Theorem 1 in Yu et al. (2020) that the
convergence rate of their sparse estimator for the coefficients in the optimal linear prediction
in terms of `2-norm is bounded by

√
s0 log p{minj

∑
k∈H(j) nk}−1/2 under our notations,

where H(j) is the collection of groups with the j-th element of X observed. When the
covariates in L and U are blockwise missing and the missing patterns are shared between
L and U , Xue et al. (2021) proposed an imputation-based estimator for β? and proved that
the convergence rate of their estimator under `2-norm is at the order of

√
s0 log p/n when

the size of unlabelled data N & s20n under some conditions.

In the next theorem, we will show how the unlabelled data contribute to the convergence
rate of the proposed estimator β̂. Define γj = arg minγ∈Rp−1 E{Xij − X>i−jγ}2 and τ2j =

E[{Xij −X>i−jγj}2] for j = 1, . . . , p, where Xi−j is the covariate subvector after removing

the j-th element of Xi. Let Θ ≡ Σ−1 and define sj = |{k 6= j : Θj,k 6= 0}|. Additional
assumptions are needed.

(D1) Assume that max1≤j≤p sj
√

log p/N = o(1).

(D2) There exists a positive constant C2 such that maxj Σj,j ≤ C2.

(D3) Assume max1≤k≤K s
(k) log pk/

√
nk = o(1), where s(k) = ‖θ(k)‖0.

Conditions (D1)-(D2) are to ensure well behavior of Θ̂. Condition (D3) is a regular
condition on the sparsity of θ(k).

12
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Theorem 3 Suppose that Conditions (A1)-(A4), (B1)-(B2), (D1)-(D2) hold. Then, if

λ
(u)
j �

√
log p/N uniformly in j ∈ {1, 2, . . . , p} for the nodewise lasso, we have

‖Θ̂j· −Θj·‖1 = Op

(
sj

√
log p

N

)
, ‖Θ̂j· −Θj·‖2 = Op

(√
sj log p

N

)
,

|τ̂2j − τ2j | = Op

(√
sj log p

N

)
,

uniformly in j ∈ {1, 2, . . . , p}, where Θ̂j· is the j-th row of Θ̂. Additionally, if Conditions
(B3), (C1)-(C2) and (D3) hold, n1 � n2 � . . . � nK � n, s0 � min{N/n,

√
N/ log p,

N/(maxj sjn log p)} for N & maxk[n
2
k/{s(k) log pk}], maxj

√
sj maxk{s(k) log pk/

√
n} =

o(1), then, for λk �
√

log pk/n, k = 1, . . . ,K in (3) and λ �
√

log p/n in (5), we have

√
n(β̂ − β?) =

√
nΘ̂J−1X>fillδw + ∆, (11)

where ‖∆‖∞ = op(1), as n→∞ and N →∞.

The proof of Theorem 3 is given in the Appendix B. The proof of (11) is nontriv-
ial, as we need to show that Θ̂∆0, ∆1 and ∆2 in (7) are asymptotically negligible, i.e.,√
n‖Θ̂∆0‖∞ = op(1),

√
n‖∆1‖∞ = op(1) and

√
n‖∆2‖∞ = op(1) under block-wise missing

setting. In contrast, if all labelled data are completely observed, the two terms
√
n‖Θ̂∆0‖∞

and
√
n‖∆2‖∞ are not involved; and van de Geer et al. (2014) showed that

√
n‖∆1‖∞ =

op(1) under the assumption that s0 �
√
n/ log p and maxj sj log p/n = o(1). Hence,

those additional conditions for guaranteeing
√
n‖Θ̂∆0‖∞ = op(1) and

√
n‖∆2‖∞ = op(1)

can be viewed as the price paid under block-wise missing setting. In addition, s0 �
min{N/n,

√
N/ log p,N/(maxj sjn log p)} indicates that the requirement on the sparsity of

β? is loose if N is large.
Theorem 3 has some important implications. As the labelled data L and the unlabelled

data U are independent, Θ̂ is independent of
√
nJ−1X>fillδw, which differs from that in

van de Geer et al. (2014). However, recall that J is a p × p diagonal matrix with J j,j =∑
k∈H(j)

√
nk, where H(j) denotes the collection of groups with the j-th element of X in

L observed. The diagonal elements of J−1 are generally distinct, resulting in the different
convergence rates of β̂j among different j = 1, . . . , p in practice, albeit at the same order
O(
√
n) when n1 � n2 � . . . � nK � n. This is due to the block-missing structure of the

data. Moreover, unlike the initial estimator β̂λ, the proposed estimator β̂ does not suffer
from those problems due to the nonuniformity of limiting theory. Based on Theorem 3,
for each j = 1, . . . , p,

√
n(β̂j − β?j ) is asymptotically normally distributed. We can then

construct a pointwise confidence interval for β?. The next corollary is a direct consequence
of Theorem 3 which holds in a uniform sense.

Corollary 4 Under the conditions given in Theorem 3, for any fixed-dimensional subset
G ⊆ {1, . . . , p}, we have

β̂G − β?G = Θ̂G·J
−1X>fillδw + n−1/2∆G,

where ‖∆G‖∞ = op(1) as n→∞ and N →∞.

13



Song, Lin and Zhou

Corollary 4 provides a theoretical basis for constructing simultaneous confidence regions
for β?G. Recall that an estimator Γ̂ of the limiting covariance matrix of J−1X>fillδw is
needed as described in Section 2.2 in the construction of the pointwise confidence interval
of β?. We construct an estimator Γ̂ in the following. For k = 1, . . . ,K, if j ∈ I(k), denote

ω
(k)
j,j = E{|Xijδ

(k)
i |2} for i ∈ Sk. We propose to estimate ω

(k)
j,j by

ω̂
(k)
j,j :=

1

nk − ŝk

∑
i∈Sk

δ̂(k)i Xij −
1

nk

∑
i∈Sk

δ̂
(k)
i Xij


2

, δ̂
(k)
i = Yi − {Z(k)

i }
>θ̂k,

where ŝk = ‖θ̂k‖0. For j, j′ ∈ I(k), a similar estimator of ω
(k)
j,j′ = E[XijXij′{δ

(k)
i }2] can be

constructed, denoted by ω̂
(k)
j,j′ . Then, the set {ω̂(k)

j,j′/nk : j, j′ ∈ I(k), k = 1, . . . ,K} is used

to construct Γ̂. The next theorem conveys that the resulting estimator is an element-wise
consistent estimator for the limiting covariance matrix of J−1X>fillδw, which can be served

as Γ̂ in practice.

Theorem 5 Suppose that Conditions (A1)-(A4), (B1)-(B2), (C2) and (D3) hold. Then,

ω̂
(k)
j,j /ω

(k)
j,j = 1 + op(1).

Hypothesis testing for single or low-dimensional coefficients in a high-dimensional linear
model is another inference problem. Recall that β?G = {β?j : j ∈ G}, where G ⊆ {1, 2, . . . , p}
is any subset of a fixed dimension. One can construct a statistical test for the null hypothesis
H0 : β?G = 0 using the test statistic

T :=
∥∥∥(Θ̂G·Γ̂Θ̂

>
G·)
−1/2β̂G

∥∥∥2
2
. (12)

Corollary 4 implies that under the null hypothesis H0, the limiting distribution of the test
statistic T is χ2(|G|), the chi-squared distribution with degree of freedom |G|. One may
reject H0 if T > χ2

1−α(|G|), where χ2
1−α(|G|) is the lower (1− α)-quantile of χ2(|G|). This

test statistic takes the dependence among the components of β̂G into account.

Our proposed semi-supervised inference procedure is imputation-free, thus (1) it is com-
putationally efficient, especially in high dimensions; (2) no restrictive conditions are imposed
on the correlation among the predictors X; (3) it is flexible to the block-missing mecha-
nism of data in the sense that no additional constraints are imposed on the relationship
between the index sets of observed covariates in different groups except the constraint that
∪kI(k) = {1, . . . , p}, where I(k) denotes the index set of covariates that are observed in
the k-th group. Thus, our method works for the scanarios in Figure 1(a). Moreover, our
proposed confidence interval does not require complete labelled observations and it is most
useful when the proportion of complete labelled observations is relatively low or even zero.
Nonetheless, with the availability of a relatively large size of complete labelled observations,
our method may not be asymptotically as efficient as the debiasing estimators studied by
van de Geer et al. (2014) and Zhang and Zhang (2014) which use completely-observed
labelled samples only, albeit at the same order of the convergence rate.
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4. Numerical Studies

4.1 Simulation Studies

We investigate the finite-sample performance of our proposed method under several sce-
narios. For any set S ⊆ {1, . . . , p}, the average empirical coverage probability (ACP) and
average length (AL) of 95% confidence intervals over S are defined as

ACP(S) =
∑
j∈S

CPj/|S|, AL(S) =
∑
j∈S

CILj/|S|,

where CPj and CILj represent the empirical coverage probability and the length of the 95%
confidence interval for β?j , respectively. For any fixed-dimensional subset G ⊆ {1, 2, . . . , p},
we consider to test H0 : β?G = 0. If G is an active subset, i.e., H0 is false, we report the
empirical power of our test statistic T defined in (12); if G is an inactive subset, i.e., H0 is
true, we report the empirical size of the test statistic T :

Power =
R∑
r=1

I{Tr > χ2
1−α(|G|)}, Size =

R∑
r=1

I{Tr > χ2
1−α(|G|)},

where R is the number of replications, Tr denotes the value of the test statistic in the r-th
replication, r = 1, . . . , R, and χ2

1−α(|G|) is the lower (1 − α)-quantile of χ2(|G|). We set
α = 0.05. The empirical power is the proportion of rejecting a false null hypothesis, and
the empirical size is the proportion of rejecting a true null hypothesis. The larger Power
is, the better the proposed test is; and the Size is close to the nominal significance level,
implying that the test is valid.

Three error distributions are tried: (1) Standard normal distribution, denoted byN(0, 1);
(2) Student’s t distribution with degrees of freedom 3, denoted by t(3); (3) Weibull distri-
bution with shape parameter 0.5 and scale parameter 0.3, denoted by WB(0.5, 0.3). We
consider three simulated examples below:

• (E1): The predictor vector X follows Gaussian distribution N(0,Σ) with Σi,j =
0.4|i−j|, and the three distributions of ε are tried. We set the target parameter
β? = (0.83, 0p/2−3, 0.83, 0p/2−3)

>, where p is the dimensionality of X. The number
of covariates in the active set s0 = 6. We consider the block-missing structure with
2 modalities, as in Figure 1(a). The labelled samples are uniformly assigned to the
two groups and the unlabelled data are independently generated from N(0,Σ). Here,
K = 2, n = 200 or 300, p = 450, N = 1000 or 5000, p1 = p2 = 225 and n1 = n2 = n/2.

• (E2): The predictor vector X follows (i) Gaussian distribution N(0,Σ) with the co-
variance matrix satisfying Σi,j = 0.4|i−j| or (ii) the Gaussian mixture distribution

0.5N(0,Σ(1))+0.5N(0,Σ(2)) with Σ
(1)
i,j = 0.4|i−j|,Σ

(2)
i,j = 0.42|i−j| and the above three

settings of ε are considered. We set the target parameter β? = (0.83, 0p/3−3, 0.83, 0p/3−3,

0.83, 0p/3−3)
> and s0 = 9. The block-missing structure with 3 modalities is presented

in Figure 1(b). The Labelled samples are uniformly assigned to the three groups and
the unlabelled data are independently generated from (i) or (ii). Here, K = 3, n = 300
or 600, p = 150, N = 5000, p1 = p2 = p3 = 50 and n1 = n2 = n3 = n/3.
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• (E3): The predictor vector X follows Gaussian distribution N(0,Σ) with Σi,j =
0.4|i−j| and ε ∼ N(0, 1). Set the target parameter β? = (0.83, 0p/3−3, 0.83, 0p/3−3, 0.83,

0p/3−3)
> and s0 = 9. We consider the block-missing structure with 3 modalities, as

in Figure 1(c). Samples with incomplete observations are randomly assigned to the
first three groups with probabilities (0.4, 0.3, 0.3); samples with complete observations
are generated independently; the unlabelled data are independently generated from
N(0,Σ). Here, K = 4, n = 360, 400 or 500, p = 150, N = 5000 or 5000, p1 = 30, p2 =
90, p3 = 60, p4 = 150 and n4 = 60, 100 or 200.

For pointwise confidence intervals and hypothesis testing problems, we compare our
proposed method with, if applicable, (i) Z. & Z.: the debiasing method proposed by Zhang
and Zhang (2014) with scaled lasso using complete observations only; (ii) G. et al.: the
debiasing method by van de Geer et al. (2014) with lasso using complete observations only;
(iii) X. et al.: a revised version of the imputation-based method studied by Xue et al. (2021).
Since Xue et al. (2021) focused on the cases that the covariates of the samples in L and U
are blockwise missing and the missing patterns (including the number of missing blocks) are
shared by L and U , we compute a revised version of their method: the block-missingness of
labelled data results in K groups of samples, and for imputing each of the missing Xij in
group r by E(Xij |XiJ(r,k)), we fit a linear regression model for Xij and the random vector
XiJ(r,k) based on the samples in group k and the unlabelled data U , where J(r, k) is an
index set of covariates that are observed in both group r and group k.

Recall that S0 = {j : β?j 6= 0}, and Sc0 = {j : β?j = 0}. Define G1 = {1, 2, 3}, G2 =
{4, 5, 6}. According to the settings in (E1) – (E3), G1 is an active subset and G2 is an
inactive subset in (E1) – (E3). Tables 1 presents the ACP and AL over the sets S0 and
Sc0, as well as the testing results for G1 and G2 under setting (E1). Tables 2–3 report the
ACP and AL over the sets S0 and Sc0, and the testing results for G1, G2 under setting (E2).
Table 4 shows the ACP and AL over the sets S0, S

c
0, and the testing results for G1, G2 under

setting (E3). The main observations are summarized as follows:

• Our pointwise estimator is generally consistent for β? as the ACP and AL are rea-
sonable across three settings, and the AL gets smaller as the labelled sample size
increases. These observations are in line with the theory.

• Our proposed test has better performance than other competitors in the three exam-
ples in the sense that, our test has larger Power for testing H0 : β?G1

= 0, and the
empirical sizes of our test for testing H0 : β?G2

= 0 are close to the nominal significance
level 0.05.

• Table 3 indicates that our proposed method is computationally efficient and performs
reasonably well when no complete labelled samples are available.

• Table 4 shows that with relatively small size of complete observations, our proposed
method performs better than the two popular debiased methods, whereas they perform
well when the size of complete labelled samples is large.
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(n, ε) Method
ACP AL Power Size

S0 Sc0 S0 Sc0 G1 G2

N = 5000
200,ε ∼ N(0, 1) Proposed 0.877 0.954 0.897 0.880 1.000 0.040
300,ε ∼ N(0, 1) Proposed 0.907 0.952 0.728 0.716 1.000 0.050

200,ε ∼ t(3) Proposed 0.890 0.955 1.064 1.038 1.000 0.070
300,ε ∼ t(3) Proposed 0.905 0.953 0.906 0.888 1.000 0.080

200,ε ∼WB(0.5, 0.3) Proposed 0.867 0.955 0.963 0.942 1.000 0.050
300,ε ∼WB(0.5, 0.3) Proposed 0.893 0.954 0.786 0.775 1.000 0.070

N = 1000
200,ε ∼ N(0, 1) Proposed 0.858 0.943 0.878 0.856 1.000 0.080
300,ε ∼ N(0, 1) Proposed 0.872 0.941 0.727 0.710 1.000 0.090

200,ε ∼ t(3) Proposed 0.865 0.940 1.090 1.059 1.000 0.100
300,ε ∼ t(3) Proposed 0.885 0.942 0.884 0.874 1.000 0.100

200,ε ∼WB(0.5, 0.3) Proposed 0.860 0.942 0.927 0.906 1.000 0.050
300,ε ∼WB(0.5, 0.3) Proposed 0.875 0.940 0.796 0.773 1.000 0.060

Table 1: Estimation results for S0, S
c
0 and hypothesis testing results for G1, G2 under (E1)

with p = 450 and varying (n,N) based on R = 100 replications. Notes: S0 = {j :
β?j 6= 0}; Sc0 = {j : β?j = 0}; G1 = {1, 2, 3}; G2 = {4, 5, 6}.

4.2 Real Data Example

In this subsection, we apply our method to analyze the ADNI data (Mueller et al., 2005).
A major goal of this study is to identify biomarkers associated with the Alzheimer’s Disease
(AD). This data set contains multiple measurements, such as magnetic resonance imaging
(MRI), positron emission tomography (PET) imaging and other cognitive tests to track
the progression of the complex disease. Similar to other relevant works (Chapman et al.,
2016; Yu et al., 2020; Xue and Qu, 2020; Xue et al., 2021), we treat the mini-mental state
examination (MMSE) score from cognitive tests as the response variable and use the re-
gion of interest (ROI) level data from complementary MRI and PET as the predictors. In
our analysis, the variable from the MRI are subcortical volume, average cortical thickness,
standard deviation of the cortical thickness and surface areas of different ROIs. These MRI
variables are extracted from the MRI conducted by the Center for Imaging of Neurodegen-
erative Diseases at University of California, San Francisco. We further normalize the MRI
variables by dividing subcortical volume, surface areas and cortical thicknesses by the sum
of the ROIs’ subcortical volume, sum of the ROIs’ surface area and the mean cortical thick-
ness of each participant, respectively (Xue and Qu, 2020). Other predictors from the PETs
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(n, ε) Method
ACP AL Power Size

S0 Sc0 S0 Sc0 G1 G2

300,ε ∼ N(0, 1)
Proposed 0.888 0.950 0.623 0.621 1.000 0.070
X. et al. 0.801 0.816 0.605 0.608 1.000 0.160

600,ε ∼ N(0, 1)
Proposed 0.923 0.949 0.449 0.445 1.000 0.030
X. et al. 0.894 0.895 0.457 0.454 1.000 0.070

300,ε ∼ t(3)
Proposed 0.903 0.954 0.756 0.753 1.000 0.050
X. et al. 0.803 0.820 0.732 0.736 1.000 0.220

600,ε ∼ t(3)
Proposed 0.920 0.949 0.540 0.535 1.000 0.020
X. et al. 0.877 0.893 0.546 0.543 1.000 0.100

300,ε ∼WB(0.5, 0.3)
Proposed 0.878 0.950 0.668 0.665 1.000 0.040
X. et al. 0.818 0.811 0.675 0.678 1.000 0.260

600,ε ∼WB(0.5, 0.3)
Proposed 0.934 0.948 0.489 0.483 1.000 0.070
X. et al. 0.906 0.897 0.510 0.508 1.000 0.100

Table 2: Estimation results for S0, S
c
0 and hypothesis testing results for G1, G2 under (E2)

(i) with p = 150, N = 5000 and varying n based on R = 100 replications. Notes:
S0 = {j : β?j 6= 0}; Sc0 = {j : β?j = 0}; G1 = {1, 2, 3}; G2 = {4, 5, 6}. X. et al.,
a revised version of the imputation-based method developed by Xue et al. (2021).
To save the computational time, we take the selected tuning parameter by 10-folds
cross-validation in the first replication as the unique tuning parameter value for
all 100 replications for the method “X. et al.”.

include region volumes and standard uptake value ratios (SUVRs) of various ROIs, which
are segmented from the PETs by the Jagust Lab at University of California, Berkeley. We
also normalize region volumes by dividing them by the sum of ROI volume of each subject.

In our analysis, the observations in the third phase of the ADNI study (ADNI-3) at
year 2 visit are regarded as labelled data, and the observations in ADNI-2 at year 2 visit
are treated as unlabelled data. To ensure independence of the labelled and unlabelled data,
the subjects in the labelled data set are removed from the unlabelled data set on the basis
of the “visit code” provided by the ADNI study. We normalize the response MMSE before
analysis. Overall, 172 features are from MRI and 208 from PET. There are 334 labelled
subjects, which include (1) 116 participants with complete MRI and PET features; (2) 102
participants with only MRI features; (3) 116 participants with only PET features. Thus,
block missingness occurs when we integrate the data for a combined analysis. Meanwhile,
334 unlabelled participants are available. Thus, K = 3, n = 334, p = 380, N = 333,
p1 = 172, p2 = 208, p3 = 380, n1 = 102 and n2 = n3 = 116.

18



Semi-supervised Inference for Block-wise Missing Data without Imputation

ε Method
ACP AL Power Size

Time
S0 Sc0 S0 Sc0 G1 G2

ε ∼ N(0, 1)
Proposed 0.891 0.948 0.552 0.547 1.000 0.040 1.265
X. et al. 0.780 0.814 0.531 0.531 1.000 0.180 37.522

ε ∼ t(3)
Proposed 0.900 0.947 0.686 0.678 1.000 0.060 1.282
X. et al. 0.811 0.813 0.658 0.658 1.000 0.220 38.187

ε ∼WB(0.5, 0.3)
Proposed 0.909 0.951 0.677 0.666 1.000 0.020 1.266
X. et al. 0.827 0.819 0.679 0.679 1.000 0.140 38.281

Table 3: Estimation results for S0, S
c
0 and hypothesis testing results for G1, G2 under (E2)

(ii) with n = 300, p = 150, N = 5000 based on R = 50 replications. Notes:
S0 = {j : β?j 6= 0}; Sc0 = {j : β?j = 0}; G1 = {1, 2, 3}; G2 = {4, 5, 6}. Time, in
minutes. X. et al., a revised version of the imputation-based method developed by
Xue et al. (2021). The tuning parameter for the method “X. et al.” was selected
by 10-folds cross-validation in each replication.

To identify the important biomarkers associated with MMSE, we apply the proposed
method to the resulting data set. For comparison, we also compute a revised version
of the method by van de Geer et al. (2014), that uses the unlabelled data to construct
the approximate inverse estimator of Σ = E(XX>) but does not use the labelled ob-
servations with missing covariates, as well as the method by Zhang and Zhang (2014)
using complete observations. The significance level α = 0.01. The results of the identi-
fied biomarkers are reported in Table 5. Our method identifies 24 important biomarkers,
which includes 8 biomarkers from MRI and 16 biomarkers from PET. Three biomark-
ers, namely “ST24TA”, “CTX RH TRANSVERSETEMPORAL SUVR” and “CTX LH CUNEUS SUVR” are
identified by all methods, and 17 biomarkers are identified by our method only, e.g.,
“RIGHT HIPPOCAMPUS VOLUME”. The three biomarkers identified by all methods represent
the average thickness of the left entorhinal cortex, SUVR of the right transverse tem-
poral and SUVR of the left cuneus, respectively. Indeed, the entorhinal cortex, trans-
verse temporal and left cuneus are related to AD (Wenk, 2003; Wang et al., 2006; Paola
et al., 2007; Peters et al., 2009). The estimates of coefficients corresponding to “ST24TA”,

“CTX RH TRANSVERSETEMPORAL SUVR” are positive across all methods, suggesting that the
two biomarkers have a positive impact on AD; in constrast, the estimate of the coeffi-
cient corresponding to “CTX LH CUNEUS SUVR” is negative for all methods, which means that
this biomarker negatively affects AD. However, in terms of the 95% confidence interval, the
lengths of our estimation for “CTX RH TRANSVERSETEMPORAL SUVR” and “CTX LH CUNEUS SUVR”

are smaller than the revised semi-supervised method based on van de Geer et al. (2014)
and the method in Zhang and Zhang (2014) but our estimation for “ST24TA” has a big-
ger length than others. The biomarkers, “ST12SV”,“ST71SV”, “LEFT AMYGD ALA VOLUME” and
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n4 Method
ACP AL Power Size

S0 Sc0 S0 Sc0 G1 G2

n4 = 60

Proposed 0.884 0.949 0.528 0.524 1.000 0.050
X. et al. 0.826 0.804 0.531 0.508 1.000 0.220
G. et al. 0.772 0.948 0.521 0.519 1.000 0.100
Z. & Z. 0.938 0.970 1.209 1.206 0.970 0.040

n4 = 100

Proposed 0.882 0.945 0.483 0.482 1.000 0.070
X. et al. 0.831 0.834 0.490 0.473 1.000 0.130
G. et al. 0.867 0.950 0.410 0.410 1.000 0.020
Z. & Z. 0.936 0.945 0.578 0.579 1.000 0.080

n4 = 200

Proposed 0.874 0.947 0.411 0.415 1.000 0.060
X. et al. 0.898 0.889 0.421 0.412 1.000 0.060
G. et al. 0.908 0.955 0.298 0.299 1.000 0.040
Z. & Z. 0.922 0.941 0.353 0.356 1.000 0.080

Table 4: Estimation results for S0, S
c
0 and hypothesis testing results for G1, G2 under (E3)

with p = 150, N = 5000 and varying n4 based on R = 100 replications. Notes:
S0 = {j : β?j 6= 0}; Sc0 = {j : β?j = 0}; G1 = {1, 2, 3}; G2 = {4, 5, 6}; n4, the
size of complete labelled observations. X. et al., a revised version of the method
developed by Xue et al. (2021); G. et al., the method by van de Geer et al. (2014);
Z. & Z., the method by Zhang and Zhang (2014). To save the computational
time, we take the selected tuning parameter by 10-folds cross-validation in the
first replication as the unique tuning parameter value for all 100 replications for
the method “X. et al.”.

“RIGHT AMYGDALA VOLUME”, related to the amygdala region, are only identified by our pro-
posed method (Coupé et al., 2019).

In addition, hypothesis testing is conducted to identify important ROIs. The results are
summarized in Table 6. Specifically, 5 biomarkers are related to the hippocampus cortex
in the brain, that is, G1 = {“RIGHT HIPPOCA-MPUS SUVR”, “RIGHT HIPPOCAMPUS VOLUME”,

“ST88SV”, “LEFT HIPPOCAMPUS SUVR”, “ST29SV”}. For testing H0 : β?G1
= 0, the p-value of

our test statistic T defined in (12) is 6.680 × 10−5, so we reject the null hypothesis H0,
implying significant impact of the hippocampus cortex on AD. In contrast, the p-values
of the test stastics in van de Geer et al. (2014) and Zhang and Zhang (2014) are around
0.030 and 0.015, respectively. We also test the effect of the entorhinal cortex on AD. The
related biomarkers are G2 = {“CTX LH ENTORHINAL SUVR”, “CTX LH ENTORHINAL VOLUME”,

“ST24TA”, “ST24TS”, “CTX RH ENTORHINAL SUVR”, “CTX RH ENTORHINAL VOLUME”, “ST83TA”, “ST

83TS”}. For testing H0 : β?G2
= 0, the p-values of all methods are very close to zero, indicating

that the entorhinal cortex is also an important ROI for tracking the progression of AD.

20



Semi-supervised Inference for Block-wise Missing Data without Imputation

Method Biomarker Est. CI

G. et al. ST24TA 1.140 (0.643,1.636)
CTX RH TRANSVERSETEMPORAL SUVR 1.074 (0.324,1.824)
CTX LH CUNEUS SUVR -1.191 (-2.054,-0.328)

Z. & Z. ST24TA 1.130 (0.521,1.739)
CTX RH TRANSVERSETEMPORAL SUVR 1.322 (0.451,2.194)
CTX LH CUNEUS SUVR -1.684 (-2.670,-0.697)

Proposed ST24TA 1.584 (0.822,2.347)
CTX RH TRANSVERSETEMPORAL SUVR 1.110 (0.416,1.804)
CTX LH CUNEUS SUVR -1.291 (-2.108,-0.473)
ST111TA 0.483 (0.095,0.872)
ST12SV 1.327 (0.404,2.250)
ST13TS -0.395 (-0.676,-0.114)
ST14TA -0.614 (-1.003,-0.224)
ST60TS -0.375 (-0.652,-0.099)
ST69SV -0.542 (-0.820,-0.264)
ST71SV 1.071 (0.201,1.941)
RIGHT PALLIDUM SUVR 0.841 (0.232,1.450)
CTX RH PARAHIPPOCAMPAL VOLUME -0.515 (-0.874,-0.156)
CTX RH SUPERIORPARIETAL SUVR 0.741 (0.142,1.341)
RIGHT THALAMUS PROPER VOLUME -0.830 (-1.474,-0.186)
LEFT AMYGDALA VOLUME -0.974 (-1.724,-0.224)
LEFT CAUDATE SUVR 0.932 (0.241,1.624)
CC MID ANTERIOR SUVR -0.825 (-1.417,-0.233)
CC MID POSTERIOR SUVR -0.623 (-1.147,-0.098)
RIGHT AMYGDALA VOLUME -0.928 (-1.496,-0.359)
RIGHT HIPPOCAMPUS VOLUME -0.739 (-1.260,-0.218)

Table 5: Estimates (Est.) and 95% confidence intervals (CI) for the coefficients of important
biomarkers. Notes: G. et al., a revised version of the method by van de Geer et al.
(2014); Z. & Z., the method by Zhang and Zhang (2014).

5. Concluding Remarks

In this paper, we study a semi-supervised inference for single or low-dimensional regres-
sion coefficients in a high-dimensional linear model with block-missing data, which covers
the construction of simultaneous confidence intervals and hypothesis testing. Our main
idea is inspired by the association between the target parameter β? and the partially ob-
served covariates, thereby eschewing any imputation. Then, the KKT conditions corre-
sponding to (5) are utilised to develop a bias-corrected estimator with a tractable limiting
distribution. In particular, it is required that the sample size of unlabelled data satisfies
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Set Method Value of test statistic p-value

G1

Proposed 28.785 6.680×10−5

G. et al. 13.925 3.048×10−2

Z. & Z. 15.837 1.466×10−2

G2

Proposed 30.415 1.785×10−4

G. et al. 34.020 4.028×10−5

Z. & Z. 25.779 1.146×10−3

Table 6: Hypothesis testing results for G1, G2 under ADNI data. Notes: G. et al., a revised
version of the method by van de Geer et al. (2014); Z. & Z., the method by Zhang
and Zhang (2014).

N & maxk[n
2
k/{s(k) log pk}] to ensure the limiting theory of the proposed estimator. How-

ever, the construction of S̄ in Section 2.2 is a weighted average of SSk, k = 1, . . . ,K, which
may not be the optimal way of integration in terms of mean squared errors. It would be
interesting to consider this problem in the future.
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Appendix A. Preliminary

We first state four lemmas that will be used later. For brevity, we suppose that Conditions
(A1)-(A4) hold throughout Appendix A.

Let Z be certain subvector of X. For i.i.d. copies of Z, {Z1, Z2, . . . , Zm}, define

G1(ei, ej , t) =

{∣∣∣∣∣e>i
(

1

m

m∑
i=1

ZiZ
>
i

)
ej − e>i E(ZZ>)ej

∣∣∣∣∣ . t√
m

}
,

where ej ∈ Rpz is the j-th unit column vector and pz represents the dimension of Z. Lemma
6 provides a general result for the subvector Z.

Lemma 6 Suppose that Condition (B1) holds. Then, for any t .
√
m,

P {G1(ei, ej , t)} ≥ 1− 2 exp(−Ct2),

where C > 0 is an absolute constant.

Proof Let ‖ · ‖ϕ1 and ‖ · ‖ϕ2 be the sub-exponential norm and sub-Gaussian norm of a
random variable, respectively. As a subvector of X, Z is also a sub-Gaussian random vector.
Thus, e>i

{
ZiZ

>
i − E(ZZ>)

}
ej is a centred random variable with sub-exponential norm∥∥∥e>i {ZiZ>i − E(ZZ>)

}
ej

∥∥∥
ϕ1

≤ 4‖Zi‖2ϕ2
,

by Lemma 10 in Cai and Guo (2020). Let C1 = 4‖Zi‖2ϕ2
. It follows from Corollary 2.8.3 in

Vershynin (2018) that there exists some constant C such that, for any t .
√
m,

P

{∣∣∣∣∣e>i
(

1

m

m∑
i=1

ZiZ
>
i

)
ej − e>i E(ZZ>)ej

∣∣∣∣∣ ≥ C1t√
m

}
≤ 2 exp(−Ct2).

We complete the proof.

Recall that for any reduced model Y = {Z(k)}>θ(k)+δ(k), k = 1, . . . ,K, Z(k) is a subvec-
tor of X, θ(k) is the `2 projection coefficient vector of Y onto Z(k) and δ(k) is the correspond-

ing residual term. For i.i.d. copies of (Z(k), δ(k)), {(Z(k)
1 , δ

(k)
1 ), (Z

(k)
2 , δ

(k)
2 ), . . . , (Z

(k)
nk , δ

(k)
nk )},

define

G(k)2 (ej , t) =

{∣∣∣∣∣ 1

nk

nk∑
i=1

e>j Z
(k)
i δ

(k)
i

∣∣∣∣∣ . t
√
nk

}
, G(k)3 =

{
max
j

∣∣∣∣∣ 1

nk

nk∑
i=1

e>j Z
(k)
i δ

(k)
i

∣∣∣∣∣ .
√

log pk
nk

}
,

where pk is the dimension of Z(k).

Lemma 7 Suppose that Conditions (B1) and (C2) hold. Then, for all k ∈ {1, . . . ,K},
P{G(k)2 (ej , t)} ≥ 1−2 exp(−Ct2) holds for any t .

√
nk and P{G(k)3 } ≥ 1−2pk exp(−C log pk),

where C > 0 is an absolute constant.
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Proof By Lemma 2.7.7 in Vershynin (2018) and Conditions (B1) and (C2), e>j Z
(k)
i δ

(k)
i is

a centred sub-exponential random variable with sub-exponential norm

‖e>j Z
(k)
i δ

(k)
i ‖ϕ1 ≤ 2‖Z(k)

i ‖ϕ2‖δ
(k)
i ‖ϕ2 ≤ C1η

(k),

where C1 = 2‖Z(k)
i ‖ϕ2‖δ

(k)
i /η(k)‖ϕ2 and {η(k)}2 is the population variance of δ(k). Corollary

2.8.3 in Vershynin (2018) states that for any t .
√
nk,

P

(∣∣∣∣∣ 1

nk

nk∑
i=1

e>j Z
(k)
i δ

(k)
i

∣∣∣∣∣ ≥ t
√
nk
· C1η

(k)

)
≤ 2 exp(−Ct2),

where C > 0 is an absolute constant. That is, P{G(k)2 (ej , t)} ≥ 1 − 2 exp(−Ct2). Ob-

serve that the event G(k)3 holds on the event ∩pkj=1G
(k)
2 (ej ,

√
log pk). Thus, P{G(k)3 } ≥

1− 2pk exp(−C log pk).

Recall that pk and nk are the dimension and sample size of Z(k) respectively. The tuning
parameter λk is defined in Section 2.2.

Lemma 8 Assume that Conditions (B1)-(B2), (C2)-(C3) hold and log pk . nk. Then, for
λk �

√
log pk/nk, for k = 1, . . . ,K, the events

‖θ̂k − θ(k)‖1 . s(k)

√
log pk
nk

, ‖Z(k){θ̂k − θ(k)}‖22/nk . s(k)
log pk
nk

,

hold with probability at least 1 − 4p−Ckk for some absolute constant Ck > 0, where the i-th

row of Z(k) is Z
(k)
i , i = 1, . . . , nk, and s(k) = ‖θ(k)‖0.

Proof In view of Lemma 7, in the reduced model Yi = {Z(k)
i }>θ(k) + δ

(k)
i for i ∈ S(k) and

k = 1, . . . ,K, the subvector Z
(k)
i of Xi is also sub-Gaussian under Condition (B1). Recall

that I(k) is the index set of the subvector Z(k). It follows from Conditions (B1), (C2) and
Lemma 7 that the event

max
j

∣∣∣∣∣∣ 1

nk

∑
i∈S(k)

e>j Z
(k)
i δ

(k)
i

∣∣∣∣∣∣ .
√

log pk
nk

,

holds with probability at least 1− 2p
−C′k
k for some absolute constant C ′k > 0 if log pk . nk,

where ej is j-th unit column vector of length |I(k)|.
We shall then show that for the nonzero index set S(k) of θ(k), n−1k

∑
i∈S(k) Z

(k)
i {Z

(k)
i }>-

compatibility condition holds with a large probability. To see this, observe that the event∥∥∥∥∥∥ 1

nk

∑
i∈S(k)

Z
(k)
i {Z

(k)
i }

> − E
[
Z(k){Z(k)}>

]∥∥∥∥∥∥
∞

.

√
log pk
nk

, (13)
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holds on the event ∩pkj=1G1(ej , ej ,
√

log pk) with Zi = Z
(k)
i for i = 1, . . . ,m and m = nk. Thus

applying Lemma 6 and Condition (B1), one can easily check that the event in (13) holds

with probability at least 1 − 2p
−C′′k
k for some absolute constant C ′′k > 0 when log pk . nk.

Moreover, the smallest eigenvalue of E
[
Z(k){Z(k)}>

]
is bounded away from zero by Con-

dition (B2), suggesting that its compatibility condition holds for S(k). Hence, by Condi-
tion (C3) and Corollary 6.8 in Bühlmann and van de Geer (2011), we have shown that

n−1k
∑

i∈S(k) Z
(k)
i {Z

(k)
i }>-compatibility condition holds for S(k) with probability at least

1− 2p
−C′′k
k .

Finally, Theorem 6.1 in Bühlmann and van de Geer (2011) shows that for λk �
√

log pk/nk,

1

nk

∑
i∈S(k)

[
{Z(k)

i }
>{θ̂k − θ(k)}

]2
+ λk‖θ̂k − θ(k)‖1 . λ2ks

(k),

holds with probability at least 1 − 4p−Ckk for some absolute constant Ck = min{C ′k, C ′′k}.
Therefore, the statement of the lemma follows.

For ease of presentation, we rewrite Z
(k)
i as XiI(k) for i ∈ S(k) and k = 1, . . . ,K. Now,

Σ̃
(k)

n,N can be written as

1

N + nk


n+N∑
i=n+1

XiI(k)X
>
iI(k) +

∑
i∈S(k)

XiI(k)X
>
iI(k)

 .

Write Σ(k) = E{XiI(k)X
>
iI(k)} and Σ̂

(k)
= n−1k

∑
i∈S(k)XiI(k)X

>
iI(k).

Lemma 9 Suppose that Conditions (B1)-(B3) and (C2)-(C3) hold and log pk . min{N,nk}.
If λk �

√
log pk/nk for k = 1, 2, . . . ,K, then,

SSk −Σ(k)θ(k) =
1

nk

∑
i∈S(k)

XiI(k)δ
(k)
i + ∆k,

where

‖∆k‖∞ .
N

(N + nk)

(√
log pk
nk

+

√
log pk
N

)
s(k)

√
log pk
nk

+

√
s(k) log pk
(N + nk)

, (14)

holds with probability at least 1− 8p−Ckk for some absolute constant Ck > 0.
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Proof Observe that

SSk −Σ(k)θ(k)

= Σ̃
(k)

n,N θ̂
(k) −Σ(k)θ(k) +

1

nk

∑
i∈S(k)

XiI(k){Yi −X>iI(k)θ̂
(k)}

= Σ̃
(k)

n,N{θ̂(k) − θ(k)}+ {Σ̃
(k)

n,N −Σ(k)}θ(k) +
1

nk

∑
i∈S(k)

XiI(k){X>iI(k)θ
(k) + δ

(k)
i −X

>
iI(k)θ̂

(k)}

= {Σ̃
(k)

n,N − Σ̂
(k)
}{θ̂(k) − θ(k)}+ {Σ̃

(k)

n,N −Σ(k)}θ(k) +
1

nk

∑
i∈S(k)

XiI(k)δ
(k)
i .

It suffices to derive the convergence rate of ‖{Σ̃
(k)

n,N − Σ̂
(k)
}{θ̂(k) − θ(k)}‖∞ and ‖{Σ̃

(k)

n,N −
Σ(k)}θ(k)‖∞, respectively. Then, in view of the fact that

Σ̃
(k)

n,N − Σ̂
(k)

=
1

N + nk

n+N∑
i=n+1

XiI(k)X
>
iI(k) +

(
1

N + nk
− 1

nk

) ∑
i∈S(k)

XiI(k)X
>
iI(k)

=
N

N + nk

 1

N

n+N∑
i=n+1

XiI(k)X
>
iI(k) −Σ(k) + Σ(k) − 1

nk

∑
i∈S(k)

XiI(k)X
>
iI(k)

 ,

it follows from Lemma 6 and Condition (B1) that the event

‖Σ̃
(k)

n,N − Σ̂
(k)
‖∞ .

N

(N + nk)

(√
log pk
nk

+

√
log pk
N

)
,

holds with probability at least 1− 2p
−C′k
k for some absolute constant C ′k > 0 when log pk .

min{N,nk}. Moreover, it has been shown in Lemma 8 that, under Conditions (B1)-(B2)

and (C2)-(C3), ‖θ̂(k) − θ(k)‖1 . s(k)
√

log pk/nk holds with probability at least 1 − 4p
−C′′k
k

for some absolute constant C ′′k > 0. It then follows that

‖{Σ̃
(k)

n,N − Σ̂
(k)
}{θ̂(k) − θ(k)}‖∞ ≤ ‖Σ̃

(k)

n,N − Σ̂
(k)
‖∞‖θ̂(k) − θ(k)‖1

.
N

(N + nk)

(√
log pk
nk

+

√
log pk
N

)
s(k)

√
log pk
nk

,

holds with probability at least 1 − 6p−Ckk for Ck = min{C ′k, C ′′k}. On the other hand,

Lemma 6 and Condition (B1) imply that ‖Σ̃
(k)

n,N −Σ(k)‖∞ .
√

log pk/(nk +N) holds with

probability at least 1− 2p
−C′k
k , and it is easy to check that

‖θ(k)‖1 ≤
√
s(k)‖θ(k)‖2 ≤

√
s(k)E(Y 2)/min{

√
E(Y 2),Λmin},

suggesting that under Conditions (B1) and (B3),

‖{Σ̃
(k)

n,N −Σ(k)}θ(k)‖∞ ≤ ‖Σ̃
(k)

n,N −Σ(k)‖∞‖θ(k)‖1

.

√
s(k) log pk
(N + nk)

,
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holds with probability at least 1 − 2p
−C′k
k . Hence, we have proved that (14) holds with

probability at least 1− 8p−Ckk . The proof is complete.

Appendix B. Proofs for Main Text

Proof of Theorem 2. Our proof is structurally similar to that of Theorem 6.1 in Bühlmann
and van de Geer (2011). It follows from the definition of β̂λ in (5) that the following basic
inequality holds:

β̂>λ Σ̂N β̂λ − 2S̄>β̂λ + λ‖β̂λ‖1 ≤ (β?)>Σ̂Nβ
? − 2S̄>β? + λ‖β?‖1.

Then,

(β̂λ − β?)>Σ̂N (β̂λ − β?) + λ‖β̂λ‖1 ≤ 2(S̄ − Σ̂Nβ
?)>(β̂λ − β?) + λ‖β?‖1.

Recall that J is a p × p diagonal matrix with J j,j =
∑

k∈H(j)

√
nk, where H(j) stands

for the collection of groups with the j-th element of X in L observed. Define wk,j =
√
nk/

∑
k∈H(j)

√
nk for k = 1, . . . ,K, j = 1, . . . , p. One can show that S̄ − Σ̂Nβ

? = (Σ −
Σ̂N )β? + J−1X>fillδw + ∆0, where Xfill and δw can be visualized in Figure 3 and ∆0 =

(∆0,1, . . . ,∆0,p)
>,

∆0,j =
∑

k∈H(j)

wk,j∆k,(j), (15)

∆k,(j) denotes the element of ∆k corresponding to the position of the j-th element of X in

Z(k) if j ∈ I(k). In other words,

(β̂λ − β?)>Σ̂N (β̂λ − β?) + λ‖β̂λ‖1 ≤ 2(J−1X>fillδw)>(β̂λ − β?) + λ‖β?‖1

+ 2
{

(Σ− Σ̂N )β? + ∆0

}>
(β̂λ − β?). (16)

Let

F0(ej , t) =

∣∣∣e>j J−1X>fillδw∣∣∣ . ∑
k∈H(j)

t∑
k∈H(j)

√
nk

 ,

F0 =

{
max
1≤j≤p

∣∣∣e>j J−1X>fillδw∣∣∣ . λ0

}
,

where λ0 � maxj [|H(j)|
√

log p/{
∑

k∈H(j)

√
nk}] and |H(j)| denotes the cardinality of the

set H(j). Theorem 2.8.2 in Vershynin (2018) tells that there exists a constant C1 > 0 such

that for any t . wk,j
√
nk, P{G

(k)
4 (ej , t)} ≥ 1− 2 exp(−C1t

2/w2
k,j) holds, where

G(k)4 (ej , t) =


∣∣∣∣∣∣wk,jnk

∑
i∈S(k)

e>j Z
(k)
i δ

(k)
i

∣∣∣∣∣∣ . t
√
nk

 .
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Note that by the definition of Xfill, δw and wk,j , on the event ∩Kk=1G
(k)
4 (ej , wk,jt), the event

F0(ej , t) holds and hence we have P{F0(ej , t)} ≥ 1− 2K exp(−C1t
2) for any t . mink

√
nk.

Thus, ∩pj=1F0(ej ,
√

log p) ⊂ F0 implies that P(F0) ≥ 1 − 2Kp exp{−C1 (
√

log p)2} ≥ 1 −
2Kp−C2 for some constant C2 > 0 (this result holds if log p . mink nk). On F0 and λ ≥ 4λ0,
by (16), we have shown that

2(β̂λ − β?)>Σ̂N (β̂λ − β?) + 2λ‖β̂λ‖1 ≤ λ‖β̂λ − β?‖1 + 2λ‖β?‖1

+ 4
{

(Σ− Σ̂N )β? + ∆0

}>
(β̂λ − β?).

Then, we can show along the same lines as those of Lemma 6.3 in Bühlmann and van de
Geer (2011) that

2(β̂λ − β?)>Σ̂N (β̂λ − β?) + λ‖β̂λ,Sc0‖1 ≤ 3λ‖β̂λ,S0 − β0,Sc0‖1

+ 4
{

(Σ− Σ̂N )β? + ∆0

}>
(β̂λ − β?). (17)

where the j-th element of β̂λ,S is β̂λ,jI(j ∈ S) for a certain set S and β0,S is defined in the
same manner.

Next, we intend to prove that the Σ̂N -compatibility condition holds for the active set
S0 = {j : β?j 6= 0}. Note that the Σ-compatibility condition holds for the set S0 under

Condition (B2). Moreover, Lemma 6 and Condition (B1) together imply that ‖Σ̂N−Σ‖∞ .√
log p/N holds with probability at least 1 − 2p−C3 for some absolute constant C3 > 0 if

log p . N . When there exists a positive constant C4 such that s0
√

log p/N ≤ C4 (this
condition holds if s0 �

√
N/ log p), it then follows from Corollary 6.8 in Bühlmann and

van de Geer (2011) that Σ̂N -compatibility condition holds with probability at least 1−2p−C3

with compatibility constant φ0 for the set S0.
Finally, by (17),

(β̂λ − β?)>Σ̂N (β̂λ − β?) + λ‖β̂λ − β?‖1 ≤ 4λ2s0/φ
2
0 + 4

{
(Σ− Σ̂N )β? + ∆0

}>
(β̂λ − β?).

Under Conditions (B1), (B3), the same arguments as in the proof of Lemma 9 yield that

‖(Σ− Σ̂N )β?‖∞ ≤ ‖Σ− Σ̂N‖∞‖β?‖1 .
√
s0 log p/N, (18)

holds with probability at least 1− 2p−C3 , since

‖β?‖1 ≤
√
s0‖β?‖2 ≤

√
s0E(Y 2)/min{

√
E(Y 2),Λmin}. (19)

Recall that

τ(pk, s
(k), nk, N) =

(
N

(N + nk)

√
log pk
nk

+

√
N log pk

(N + nk)

)
s(k)

√
log pk
nk

+

√
s(k) log pk
(N + nk)

.

Furthermore, Lemma 9 implies that under Conditions (B1)-(B3) and (C2)-(C3),

‖∆k‖∞ . τ(pk, s
(k), nk, N),
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holds with probability at least 1 − 8p
−C′k
k for some absolute constant C ′k > 0. Combining

(18) and the definition of ∆0, we have

‖(Σ− Σ̂N )β?‖∞ + ‖∆0‖∞

.
√
s0 log p/N + max

j

 1∑
k∈H(j)

√
nk

∑
k∈H(j)

√
nk‖∆k‖∞


.
√
s0 log p/N + max

j
[{
∑

k∈H(j)

√
nk}−1

∑
k∈H(j)

{
√
nkτ(pk, s

(k), nk, N)}],

holds with probability at least 1− 2p−C3 − 8K{mink pk}−C5 for C5 = min{C ′1, . . . , C ′K} > 0
under Condition (C1). Therefore, if additionally, λ satisfies those condition in Theorem 2,
we have

(β̂λ − β?)>Σ̂N (β̂λ − β?) . λ2s0,

‖β̂λ − β?‖1 . λs0,

hold with probability larger than 1−2p−C3−10K{mink pk}−C6 for C6 = min{C2, C5}. The
proof of Theorem 2 is complete.

Proof of Theorem 3. The KKT conditions corresponding to (5) are

−(S̄ − Σ̂N β̂λ) + λκ̂ = 0.

It then follows from Lemma 9 that S̄− Σ̂Nβ
? = (Σ− Σ̂N )β? +J−1X>fillδw + ∆0, where ∆0

has been defined in (15). This implies that

β̂λ − β? + Θ̂λκ̂ = Θ̂J−1X>fillδw + Θ̂∆0 − (Θ̂Σ̂N − I)(β̂λ − β?)− Θ̂(Σ̂N −Σ)β?

= Θ̂J−1X>fillδw + Θ̂∆0 + ∆1 + ∆2,

where I ∈ Rp×p is an identity matrix, ∆1 = −(Θ̂Σ̂N−I)(β̂λ−β?) and ∆2 = −Θ̂(Σ̂N−Σ)β?.
When the sample size in each group is of the same order, i.e., n1 � n2 � . . . � nK � n, it
suffices to prove that

√
n‖Θ̂∆0‖∞ = op(1),

√
n‖∆1‖∞ = op(1) and

√
n‖∆2‖∞ = op(1). The

proof is carried out in several steps.
Step 1: To prove the convergence rate of ‖Θ̂j· −Θj·‖1, ‖Θ̂j· −Θj·‖2 and |τ̂2j − τ2j |. By

the same arguments as in the proof of Theorem 2.4 in van de Geer et al. (2014), when using
N observations of X, i.e., {Xn+1, Xn+2, . . . , Xn+N}, to estimate Θ̂ and τ̂j , we can show

that ‖Θ̂j· − Θj·‖1 = Op(sj
√

log p/N), ‖Θ̂j· − Θj·‖2 = Op(
√
sj log p/N) and |τ̂2j − τ2j | =

Op(
√
sj log p/N) uniformly in j for λ

(u)
j �

√
log p/N under Conditions (B1)-(B2), (D1)-

(D2).
Step 2: To derive the convergence rate of

√
n‖∆1‖∞. Note that if N & maxk n

2
k/{s(k)

log pk}, we have τ(pk, s
(k), nk, N) � s(k) log pk/nk. It then follows from Theorem 2 that for

n1 � n2 � . . . � nK � n and s0 � min{N/n,
√
N/ log p}, ‖β̂λ − β?‖1 = Op(s0

√
log p/n)

under Conditions (B1)-(B3), (C1)-(C2), (D3) and N satisfies N & maxk n
2/{s(k) log pk}.

The KKT conditions for the nodewise lasso regression imply that

‖Θ̂Σ̂N − I‖∞ ≤ max
j
λ
(u)
j /τ̂2j .
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Observe that

√
n‖∆1‖∞ ≤

√
n‖Θ̂Σ̂N − I‖∞ · ‖β̂λ − β?‖1

≤
√
nmax

j
λ
(u)
j /τ̂2j · ‖β̂λ − β?‖1

= Op

(√
log p/Ns0

√
log p

)
.

Henece, if s0 �
√
N/ log p, then

√
n‖∆1‖∞ = op(1).

Step 3: To derive the convergence rate of
√
n‖∆2‖∞. Under Condition (B2), C1‖β?‖22 ≤

(β?)>Σβ?, where the smallest eigenvalue of Σ, Λmin ≥ C1. By Conditions (B2), (B3) and
(19), we have ‖β?‖1 .

√
s0. By Lemma 6 and Condition (B1), ‖Σ̂N−Σ‖∞ = Op(

√
log p/N),

indicating that ‖(Σ̂N −Σ)β?‖∞ ≤ ‖Σ̂N −Σ‖∞‖β?‖1 = Op(
√
s0 log p/N).

On the other hand, using the lasso for nodewise regression, we have constructed the ap-
proximate inverse Θ̂ of Σ with Θ̂j· = Ĉj/τ̂

2
j , where Ĉj = (−γ̂j,1,−γ̂j,j−1, 1,−γ̂j,j+1,−γ̂j,p)>

for j = 1, . . . , p. Note that ‖Ĉj‖1 = 1 + ‖γ̂j‖1 ≤ 1 + ‖γj‖1 + ‖γ̂j − γj‖1. Under Conditions
(B1)-(B2) and (D1), one can show that ‖γ̂j − γj‖1 = Op(sjλj) by the same arguments as
in the proof of Lemma 8. Moreover,

‖γj‖1 ≤
√
sj‖γj‖2 ≤

√
sjΣj,j/Λmin,

where Λmin is the smallest eigenvalue of Σ. This suggests that ‖Ĉj‖1 = Op(
√
sj) under Con-

ditions (B2) and (D2). Moreover, we have shown in Step 1 that |τ̂2j −τ2j | = Op(
√
sj log p/N)

uniformly in all j; and under Condition (B2), τ2j = 1/Θj,j is bounded away from zero. They

imply that maxj ‖Θ̂j·‖1 = Op(maxj
√
sj). It then follows that

√
n‖∆2‖∞ ≤

√
n‖(Σ̂−Σ)β?‖∞ ·max

j
‖Θ̂j·‖1

= OP

(
max
j

√
s0sjn log p/N

)
.

Here, if s0 � N/(maxj sjn log p),
√
n‖∆2‖∞ = op(1).

Step 4: To derive the convergence rate of
√
n‖Θ̂∆0‖∞. According to the arguments

in Step 3, maxj ‖Θ̂j·‖1 = Op(maxj
√
sj) under Conditions (B1)-(B2) and (D1)-(D2). By

Lemma 9, Conditions (B1)-(B3), (C2) and (D3), ‖∆k‖∞ = Op{s(k) log pk/nk}, if N &
maxk n

2
k/{s(k) log pk}. Note that when n1 � n2 � . . . � nK � n, under Condition (C1),

√
n‖Θ̂∆0‖∞ ≤

√
nmax

j
‖Θ̂j·‖1‖∆0‖∞

≤
√
nmax

j
‖Θ̂j·‖1 max

k
‖∆k‖∞

= OP

[
max
j

√
sj max

k
{s(k) log pk/

√
n}
]
.

Thus, if sj satisfies maxj
√
sj maxk{s(k) log pk/

√
n} = o(1),

√
n‖Θ̂∆0‖∞ = op(1).

As a result, under Conditions (B1)-(B3), (C1)-(C2) and (D1)-(D3), when n1 � n2 �
. . . � nK � n, s0 � min{N/n,

√
N/ log p,N/(maxj sjn log p)} forN & maxk n

2/{s(k) log pk},
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and sj satisfies maxj
√
sj maxk{s(k) log pk/

√
n} = o(1), we have

√
n‖Θ̂∆0‖∞ = op(1),√

n‖∆1‖∞ = op(1) and
√
n‖∆2‖∞ = op(1). The proof of Theorem 3 is complete.

Proof of Theorem 5. Write

1

nk − ŝk

∑
i∈S(k)

{δ̂(k)i Xij}2 =
1

nk − ŝk

∑
i∈S(k)

{δ(k)i + δ̂
(k)
i − δ

(k)
i }

2X2
ij

=
1

nk − ŝk

∑
i∈S(k)

{δ(k)i Xij}2 +
2

nk − ŝk

∑
i∈S(k)

δ
(k)
i {δ̂

(k)
i − δ

(k)
i }X

2
ij

+
1

nk − ŝk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }

2X2
ij

=:
1

nk − ŝk

∑
i∈S(k)

{δ(k)i Xij}2 + Π1 + Π2.

Under Condition (B1), {Xij}i∈S(k) are i.i.d. sub-Gaussian random variables for any j ∈
I(k). This implies that E(X8

ij) is bounded by a constant C1 > 0, where C1 depends only on

the sub-Gaussian norm of Xij . Analogously, under Condition (C2), E[{δ(k)i }4] is bounded

by a constant C2 > 0 depending on the sub-Gaussian norm of δ
(k)
i . Then, by the Cauchy–

Schwartz inequality, we have

Π2
1 ≤

4

nk − ŝk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }

2 × 1

nk − ŝk

∑
i∈S(k)

{δ(k)i X2
ij}2

≤ 4

nk − ŝk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }

2 ×

 1

nk − ŝk

∑
i∈S(k)

{δ(k)i }
4 × 1

nk − ŝk

∑
i∈S(k)

X8
ij

1/2

= Op

 1

nk − ŝk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }

2

 .

Moreover, under Conditions (B1)-(B2), (C2) and (D3), it follows from Lemma 8 and the

definition of δ̂
(k)
i that

1

nk − ŝk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }

2 � ‖Z(k){θ̂k − θ(k)}‖22/nk = op(n
−1/2
k ), (20)

where Z(k) ∈ Rnk×pk is the design matrix with rows {XiI(k) ∈ Rpk : i ∈ S(k)}, and the
last equality holds under Condition (D3). Hence, Π1 = op(1). We will next show that
Π2 = op(1). To see this, by Hölder’s inequality, we have

Π2 ≤ max
i∈S(k)

X2
ij ·

1

nk − ŝk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }

2

= op

{
n
−1/2
k max

i∈S(k)
X2
ij

}
,
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where in the last equality holds in view of (20). By Lemma 2.2.2 in van der Vaart and
Wellner (1996), we have ‖maxi∈S(k)X

2
ij‖ϕ1 ≤ C3 log nk, where ‖ · ‖ϕ1 represents the sub-

exponential norm of a random variable and C3 is a positive constant only depending on the
sub-Gaussian norm of Xij . This means that, for any t > 0,

P
{

1

log nk
max
i∈S(k)

X2
ij ≥ t

}
≤ 2 exp(−t/C4),

where C4 is a positive constant. This implies that maxi∈S(k)X
2
ij = Op(log2 nk) under

Condition (B1). Hence, Π2 = op(1). Moreover, the law of large numbers implies that

1

nk − ŝk

∑
i∈S(k)

{δ(k)i Xij}2 = E{|X(k)
ij δ

(k)
i |

2}+ op(1).

We then conclude that

1

nk − ŝk

∑
i∈S(k)

{δ̂(k)i Xij}2 = E{|X(k)
ij δ

(k)
i |

2}+ op(1).

Similarly,

1

nk

∑
i∈S(k)

δ̂
(k)
i Xij =

1

nk

∑
i∈S(k)

δ
(k)
i Xij +

1

nk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }Xij .

By Cauchy–Schwartz inequality, we have shown that

1

nk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }Xij ≤

 1

nk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }

2 · 1

nk

∑
i∈S(k)

X2
ij

1/2

,

suggesting that
1

nk

∑
i∈S(k)

{δ̂(k)i − δ
(k)
i }Xij = op(1)

by (20) and Condition (B1). We complete the proof.
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